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a b s t r a c t 

This paper proposes a horizontal collaborative approach for the wine bottling scheduling problem. The 

opportunities for collaboration in this problem are due to the fact that many local wine producers are 

usually located around the same region and that bottling is a standard process. Collaboration among 

wineries is modeled as a cooperative game, whose characteristic function is derived from a mixed inte- 

ger linear programming model. Real world instances of the problem are, however, unlikely to be solved 

to optimality due to its complex combinatorial structure and large dimension. This motivates the intro- 

duction of an approximated version of the original game, where the characteristic function is computed 

through a heuristic procedure. Unlike the exact game, the approximated game may violate the subad- 

ditivity property. Therefore, it turns relevant not only to find a stable cost allocation but also to find a 

coalition structure for selecting the best partition of the set of firms. We propose a maximum entropy 

methodology which can address these two problems simultaneously. Numerical experiments illustrate 

how this approach applies, and reveal that collaboration can have important positive effects in wine bot- 

tling scheduling decreasing delay by 33.4 to 56.9% when improvement heuristic solutions are used. In 

contrast to the exact game in which the grand coalition is always the best outcome, in the approximated 

game companies may be better forming smaller coalitions. We also devise a simple procedure to repair 

the characteristic function of the approximated game so that it recovers the subadditivity property. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In horizontal collaboration, two or more entities that operate

n the same level of the supply chain (e.g., they are competi-

ors) join effort s to perf orm t asks together [52] . The collaboration

sually leads to an overall better outcome compared to the out-

omes the entities would achieve if they would act separately [18] .

he improved outcome can be, for example, an increase in prof-

ts or a reduction in costs. Recent implementations and develop-

ents, such as the joint transportation planning between Tupper-

are and Procter and Gamble [46] and the exchange of timber

mong Swedish forestry companies [23] , have proved the effective-

ess of collaboration in practice. Accordingly, the interest for such

ollaborative approaches has received increasing attention in the

anagement science literature. 

Horizontal collaboration may play a particularly interesting role

n industries with low margins, where any cost reduction could be
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rucial to assure profitability [22] . The wine industry is an example

f such type of industries. Under high competition in the interna-

ional markets, wine producers are often on the weaker side of the

egotiation with large customers, such as government monopolies

r large retail chains. According to the Wine Institute of California 1 ,

8,230 millions liters of wine were produced in 2014 by 57 dif-

erent countries around the world. None of these countries reach

ore than 17% of the total production, and 16 of them produced

ore than 1%. To stay competitive and profitable in the markets,

ineries must manage their production processes as efficiently as

ossible. 

The best regions for grape growth are usually well delimited

hich implies that wineries are often quite close to each other. For

nstance, in Chile’s Casablanca Valley there are 13 wineries with a

aximum pairwise distance of 18 km. Transportation between the

ottling lines of these wineries can be done in just a few min-

tes. While some tasks in the production process of wine are spe-

ific to every particular producer, some other tasks, such as pack-

ging, are rather standard. Nowadays, some Chilean wineries use

 non-structured outsourcing policy through third-party logistics
1 www.wineinstitute.org . 
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providers (3PL) to bottle the wine at the plants of other wineries

when their capacity is not sufficient. The movement of the wine

is done by trucks directly loaded with the wine. This procedure

does not represent a major operational challenge. In this scenario,

horizontal collaboration emerges as a feasible and appealing op-

portunity for local producers to reduce production costs and thus

increase margins and gain competitive advantages. Moreover, ini-

tiatives such as the creation of Wines of Chile , an association that

gathers many local producers to promote their wines in the inter-

national market and to foster research and development, denote

the willingness of different companies to join effort s f or improve-

ments in the industry. 

In this article, we study collaboration in the wine bottling

scheduling problem. In this problem, bottling jobs must be as-

signed to different lines taking into account setup times, process-

ing times and deadlines, in such a way that the total delay costs

are minimized. When two or more firms collaborate, they can

share their bottling lines, and an optimal schedule for all firms’

jobs is attempted to be found. In both non-collaborative and col-

laborative cases, the scheduling bottling problem can be formu-

lated as a mixed integer programming (MIP) model. We show that

the optimal solution to the collaborative case is at least as good as

the sum of the costs of the non-collaborative solutions. When such

an optimal solution is known, a further problem is how to allocate

the costs among firms such that none of them has incentives to de-

viate from the so-called grand coalition. We address this problem

by traditional cost allocation methods, derived primarily from co-

operative game theory [67] . In practice, however, the optimal solu-

tions might not be easy to find, because of the combinatorial struc-

ture of the scheduling problem and the dimension of real-world

instances. Implementable solutions are, therefore, commonly found

by heuristic approaches. While these may conduce to good solu-

tions in relatively short times, it turns less clear whether collabo-

ration still provides the best solution or not. We study this prob-

lem using heuristics and numerical experiments. Our results reveal

that collaboration among all companies is often outperformed by

a partition of them into smaller sets, which is remarkable as most

related literature has assumed that the grand coalition forms. 

The contribution of this paper is twofold. First, we introduce

cooperation to the bottling scheduling problem in the wine indus-

try, and we show through numerical experiments that considerable

savings can be achieved. Second, we tackle the quite unexplored

area of approximated cooperative games (that is when the charac-

teristic function is computed through a heuristic). As it is shown

in this paper, the approximated game does not necessarily satisfy

the subadditivity property. So it turns relevant first to find an al-

ternative to recover this property and second to address the ques-

tion of which coalitions provide the overall better outcome. For the

first problem, we propose a simple procedure that repairs the ap-

proximated characteristic function in such a way that the result-

ing approximated game satisfies subadditivity. For the second one,

we propose a novel cost allocation and coalition formation model

for the approximated game which seeks equity within each coali-

tion formed while simultaneously allocating costs to the firms. We

prove that our method provides a unique solution which also min-

imizes the overall cost. While we focus on the wine bottling prob-

lem, these contributions are relevant in a broader scope. In fact,

the wine bottling problem can be seen as a job scheduling prob-

lem that arises in many other industries. Likewise, the approxima-

tion of the characteristic function in a cooperative game is rele-

vant not only in this collaborative job scheduling problem but also

in many other challenging combinatorial problems where the op-

timal solution is rarely available, such as in collaborative vehicle

routing and collaborative inventory routing. In addition, finding a

coalition structure is an important problem when the grand coali-

tion is inviable, for example, because of the managerial burden of
oordinating the cooperation when the number of partners is too

arge. 

The rest of the paper is organized as follows. In Section 2 , we

resent some background and related literature. In Section 3 , we

ormulate the bottling scheduling problem as a MIP model and

lso formulate its collaborative version as a cooperative game in

oth exact and approximated forms. In Section 4 , we outline tra-

itional cost allocation methods and propose a new method based

n a maximization entropy principle which can also deal with the

oalition formation problem. In Section 5 , we use a numerical ex-

mple to illustrate how previous models and methods apply and

erform a numerical experiment to test the new method. Our con-

luding remarks are presented in Section 6 . 

. Background 

Wine production has roughly four stages: grape production,

ine manufacturing, bottling/packaging, and distribution ( Fig. 1 ).

he grape production consists mainly of agricultural operations

9,38] , such as plantation and harvest. The wine manufacturing in-

ludes all the operations needed to transform the grape into wine,

uch as fermentation and storage. This stage is usually under the

trict control of the oenologist who is in charge to ensure the qual-

ty of the wine. In the packaging stage, processes such as bottle

lling, corking, capsuling, and labeling are developed. The distri-

ution stage is mainly transport related, but also the management

f sales channels is included. A number of articles have focused

n wine production and its supply chain, such as Adamo [1] , Gar-

ia et al. [25] , Mac Cawley [44] , Ting et al. [59] , and Varsei and

olyakovskiy [64] . In particular, for the wine grape harvesting we

efer the reader to Ferrer et al. [20] , for the wine manufacturing

tage to Cakici et al. [11] , for the packaging stage to Berruto et al.

10] , Basso and Varas [8] and Varas et al. [62] , and for the distribu-

ion stage to Cholette [13] . In this paper, we focus on collaborative

pportunities in the third stage of the process. Bottling and pack-

ging products have been identified as tasks where collaboration

mong different firms can be useful not only from cost savings and

ervice level perspectives but also from an environmental perspec-

ive [27] . 

During the bottling/packaging stage, wine is kept in interme-

iate tanks waiting to be bottled, labeled and finally packaged in

obs ( Fig. 2 ). The bottling machines need lengthy non-added value

etup times which are job and line dependent. Labeling usually

akes place right after the bottling, but sometimes could be decou-

led to tackle demand uncertainty using a postponement strategy

14] . Each job should be delivered to clients by its corresponding

ue date. Then, the main problem of this stage is to determine

 job sequence for each production line such that the delays are

inimized. 

To the best of our knowledge, there are no previous works on

ollaborative approaches in the wine industry neither in this nor

ther stages of the production process. We seek to expand horizon-

al collaboration to this industry, by means of principles well es-

ablished in the classic cooperative game theory literature [67] and

mergent trends in collaborative logistics [4] . 

Although our work is primarily inspired by the wine industry,

he methodology proposed in this paper is general enough to be

xpanded to other industries with similar production processes.

n this respect, we note that as large wineries usually have sev-

ral production lines and large amounts to produce, many prod-

cts need to be scheduled on multiple non-equal parallel produc-

ion lines. All the jobs take the same route in each line, and the

ob must be entirely bottled and labeled before continuing with

he next one. Following the taxonomy of Graham et al. [28] , the

ine bottling problem studied in this paper can be classified as a

 / ST sd / T j scheduling problem, where R refers to the unrelated par-
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Fig. 1. The wine supply chain. 

Fig. 2. Packaging activities. 
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llel machine shop problem, ST sd to the sequence-dependent setup

imes, and T j to the total tardiness/completion time criteria. Coop-

ration in the job scheduling problem assumes that the firms are

ble to share their parallel production lines. Thus, even if every

rm would have a single machine, the cooperative scheme pro-

osed in this paper involves solving a problem with multiple un-

elated parallel machines [35,50,61] . This problem has many ap-

lications. These include, for example, shift-scheduling [15] , oper-

tions at crossdock centres [40] , assembly of electronic products

39] , integrated-circuit packaging manufacturing systems [65] , load

alancing in project assignment [41] , automobile gear manufac-

uring processes [26] , air blast freezing in the food industry [12] ,

nd a negotiation scheme for scheduling problems in semiconduc-

or manufacturing [48] . For a review on job scheduling and par-
llel machine problems we refer the reader to Allahverdi [2] and

okotoff [45] respectively. 

. Collaborative bottling scheduling 

In this section, we study the bottling problem in both the stan-

ard (single-company) and the collaborative cases. We start by de-

cribing the packaging problem faced by a winery, and we formu-

ate the problem as a MIP. The model is then used to compute the

haracteristic function that defines the collaborative case as a co-

perative game. We then define the approximated game in which

he characteristic function is computed heuristically. 
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3.1. Description and formulation of the bottling problem 

Most of the export-focused wineries sell their products Free on

Board (FOB). This implies that the buyer is in charge of the trans-

portation from the port of shipment to its destination. Thus, one

of the primary concerns for the wineries is to dispatch the wine

to meet the stack date, which is the time the ship sails. If the

stack date is not met, customers will not have their shipment on

time affecting the service level of the firm. In the wine industry,

the job scheduling problem arises when the bottling and label-

ing packaging activities are requested by clients following a make-

to-order policy. The jobs need to be allocated to the production

lines which are highly automated. Between two consecutive jobs,

lengthy non value-added setups must be performed. The result-

ing problem is highly combinatorial and, consequently, difficult to

solve to optimality in reasonable computing times. Moreover, as

cancellations and rush orders may occur, it is usually necessary

to address the problem several times. For this purpose, Basso and

Varas [8] formulated a MIP model and a heuristic solution ap-

proach following a greedy strategy. Their model includes multiple

industry-specific constraints such as a non-wine acidification con-

straint (time windows resource constraints). In this paper, we as-

sume that each winery could have multiple bottling lines and the

processing time for each job is line-dependent. We assume setup

times are sequence-dependent due to both, the time needed to

clean the machine when passing from one type of wine to another,

and the adjustment time of the machines required to change dry

materials (bottles, corks, and labels) which are specific for each

job. We assume that there are no time windows resource con-

straints and one job per customer only. These assumptions sim-

plify the presentation of the problem and help us keep the focus

of the paper on the opportunities for collaboration. At the same

time, it also positions the problem within a broader context of job

scheduling which, as seen in the background section, has many ap-

plications. 

Sets 

N : set of jobs (indexed by n ). 

L : set of bottling lines (indexed by l). 

Parameters 

rc n,l ∈ R + : Processing time for job n ∈ N in line l ∈ L . 
setup n,n ′ ,l : Setup time needed to pass from job n ∈ N to job n ′ ∈ N in 

line l ∈ L . 
 n ∈ R + : Deadline for job n ∈ N. 

M ∈ R + : Constant large enough. 

Variables 

g n ∈ R + : Initial processing time for job n ∈ N. 

o n ∈ R + : Final processing time for job n ∈ N. 

u n ∈ R + : Positive part of o n − t n . 

x n,l ∈ { 0 , 1 } : It takes value 1 if job n ∈ N is processed in line l ∈ L . 
y n,n ′ ∈ { 0 , 1 } : It takes value 1 if job n ∈ N is processed after job n ′ ∈ N

in the same line. 

y j n,n ′ ∈ 
{ 0 , 1 } 

: It takes value 1 if job n ∈ N is processed just after job 

n ′ ∈ N in the same line. 

Objective function 

The objective is to minimize the total delay costs of the winery.

For the sake of simplicity, we define this cost as equal to 1 per unit

of time. Then, the objective function (1) is given by the following

expression: 

min 

∑ 

u n (1)

n ∈ N t  
onstraints 

 n ≥ o n − t n ∀ n ∈ N (2)

 

l∈ L 
x n,l = 1 ∀ n ∈ N (3)

 n = g n + 

∑ 

l∈ L 
rc n,l · x n,l ∀ n ∈ N (4)

 n ′ + setup n ′ ,n,l ≤ g n + M(1 − y j n,n ′ ) ∀ n, n 

′ ∈ N, n � = n 

′ , l ∈ L (5)

 n,n ′ ≤ 1 + 

g n − g n ′ 

M + 1 

∀ n, n 

′ ∈ N, n � = n 

′ (6)

 n,n ′ ≤ 1 − x n,l + x n ′ ,l ∀ n, n 

′ ∈ N, n � = n 

′ , l ∈ L (7)

 n,n ′ ≥ x n,l + x n ′ ,l − 2 + 

g n − g n ′ 

M + 1 

∀ n, n 

′ ∈ N, n � = n 

′ , l ∈ L (8)

 ≥ x n,l + x n ′ ,l − y n,n ′ − y n ′ ,n ∀ n, n 

′ ∈ N, n > n 

′ , l ∈ L (9)

j n ′ ,n ≤ y n ′ ,n ∀ n, n 

′ ∈ N, n � = n 

′ (10)

j n,n ′ ≤ 2 − y n,n ′′ − y n ′′ ,n ′ ∀ n, n 

′ , n 

′′ ∈ N, n � = n 

′ � = n 

′′ � = n (11)

 n,n ′ ≤
∑ 

n ′′ ∈ N 
y j n,n ′′ ∀ n, n 

′ ∈ N, n � = n 

′ (12)

j n,n = 0 ∀ n ∈ N (13)

Since objective function (1) minimizes the sum of variables u n 
nd constraints (2) impose a lower bound for these variables, both

ogether define u n as the non-negative part of o n − t n . Constraints

3) impose that each job must be assigned to exactly one line. Con-

traints (4) define o n as the final processing time for job n . Con-

traints (5) state that job n can not start before the end of the

revious job n ′ plus the respective setup time. Constraints (6) –(9)

mpose y n,n ′ to take the value 1 if and only if job n is processed

fter job n ′ in the same line. Constraints (10) –(13) impose y j n,n ′ to

ake value 1 if and only if job n is processed just after job n ′ in

he same line. This model captures the essential features of the

ottling scheduling problem and serves as a basis to define the

ollaborative bottling scheduling problem as a cooperative game

ith transferable utility. The definition of such a game requires the

est outcomes that the different sets of companies can achieve by

orking together, which can be computed as the optimal objective

alues to different instances of the model. In what follows, we pro-

ide a formal definition of the collaborative problem preceded by

he definitions of some concepts. 

.2. Cooperative game theory concepts 

Early literature in cooperative game theory has dealt with the

roblem of how different agents may improve their overall results

f instead of working separately they collaborate [67] . Such coop-

rative game theory principles have gained increasing attention in

he literature on production and logistics because of a broad range
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f applications, such as in transportation [23] and inventory pool-

ng [31] . The improvements of the collaborative solution over the

on-collaborative solution in this context may involve cost sav-

ngs, larger profits, higher service levels, or less environmental ef-

ects. Even if these improvements can be realized, [3] emphasize

hat the implementation of the collaborative solution requires to

olve two key questions: how should potential savings be divided

mong a group of collaborating companies and how should collab-

rating groups be formed. Moreover, computing the outcomes of

ll the possible groups often may require solving a complex op-

imization problem a number of times that grows exponentially

ith the number of companies [19] . Our attention then focuses on

ddressing these challenges in the collaborative bottling schedul-

ng problem. We proceed first by introducing some concepts. Let F

e the set of all wineries. A non-empty subset of F is called a coali-

ion . We define K the set of all possible coalitions. The coalitions

epresent a group of winery firms that cooperate by sharing their

roduction lines. The set F ∈ K is called the grand coalition . The so-

alled characteristic function C : K → R + computes the cost of each

oalition. By convention, C(∅ ) = 0 . The cost C ({ f }) correspond to the

tand-alone cost of the winery firm f ∈ F , that is, it corresponds to

he optimal bottling schedule cost for f . The pair ( F, C ) is called a

ransferable cost game . An important property of C is the subaddi-

ivity property, which states that C(S ∪ T ) ≤ C(S) + C(T ) , ∀ S, T ∈ K.

f this property is satisfied, a given coalition is at least as good as

ny of its partitions and, in consequence, the grand coalition min-

mizes the total costs. 

.3. The exact bottling scheduling game 

To compute the characteristic function, we define the collabo-

ative version of the MIP model presented in Section 3.1 . For each

inery f ∈ F , we define N f as the set of jobs and L f as the set of

ines of winery f . We define a coalition S ⊂ F as a subset of winer-

es which agreed to cooperate in the bottling and labeling process.

e define the set N S and L S as the jobs and the production lines

f the coalition S , respectively, as follows: 

 S = 

⋃ 

f∈ S 
N f , L S = 

⋃ 

f∈ S 
L f , 

he cost C ( S ) of each coalition S is computed by solving the MIP

odel formulated in Section 3 taking N = N S and L = L S . This opti-

ization problem will be denoted (O S ) . Once the model has been

olved for all coalitions, the exact transferable cost game is defined

y the pair ( F, C ). 

roposition 3.1. The characteristic function C for the exact bottling

ost transferable game satisfies the subadditivity property. 

The mathematical proof can be found in Appendix A . The state-

ent is rather intuitive because the optimal solution of the prob-

em without collaboration is a feasible solution for the problem

ith collaboration. 

.4. The approximated bottling scheduling game 

Job scheduling problems are recognized in the literature as very

ard to solve (see, e.g. [6] and [35] ). As it was shown by Basso and

aras [8] , the bottling scheduling problem is only solvable to op-

imality by the MIP approach when the number of jobs is quite

mall ( ≤ 15 jobs). Real world instances could easily exceed 100

obs on a weekly basis. In these cases, an optimal schedule is prac-

ically impossible to compute. Even finding a feasible solution may

urn an interminable task. A more viable way is to construct a so-

ution based on a heuristic approach. Basso and Varas [8] present a

reedy heuristic algorithm for a more complex version of the bot-

ling scheduling problem presented in this paper. The logic of that
reedy heuristic is to schedule jobs as soon as possible into the

roduction line with the least processing time. For each discrete

ime and each job, the algorithm verifies if the partial solution is

easible. This is done through a verifier algorithm. If the partial so-

ution is feasible, the heuristic continues with the next job. If not,

he heuristic tries to schedule the job in the next period. Unfor-

unately, this procedure does not necessarily conduce to a feasible

olution. To overcome this drawback, in this paper we propose an

mprovement to the greedy heuristic using Algorithm 1 below. 

lgorithm 1 Bottling scheduling heuristic. 

1: Define the parameter α > 1 as the increasing weight of the

deadline in each iteration 

2: while True do 

3: Apply the greedy algorithm presented in Basso and Varas

(2017) 

4: if A solution is found then 

5: Break while 

6: end if 

7: t ← αt 

8: end while 

9: Compute the delays of the solution using the real deadlines 

Algorithm 1 uses iteratively the greedy of Basso and Varas

8] and, if a solution is not found, the deadline vector t is extended

y a weight α. Since there is no resource constraint, this algorithm

ust terminate with a feasible solution to the MIP model in a fi-

ite number of steps. We define ˜ C (S) as the cost of the coalition

 computed through this heuristic procedure. Accordingly, we de-

ne the approximated transferable cost game by the pair (F , ̃  C ) .

ote that Proposition 3.1 is not necessarily true in the approxi-

ated game, as will be shown in our numerical results. Therefore,

e also devise a procedure that repairs the approximated charac-

eristic function in such a way that it recovers the subadditivity

roperty. For this, we note that for any coalition S and a partition

of S , the solution composed by solving the job scheduling prob-

em for each set in P is feasible in the job scheduling problem of

 . We can, therefore, define an alternative characteristic function

alue ̂ C (S) for the approximated game by taking the lowest value

etween the cost ˜ C (S) found by the heuristic and the lowest value

f the cost among all partitions of S . We formalize this procedure

n Algorithm 2 below. 

lgorithm 2 Procedure to recover subadditivity. 

1: for i ∈ { 1 , . . . , | F |} do 

2: for S ∈ K : | S| = i do 

3: ̂ C (S) ← ̃

 C (S) 

4: for P ∈ �S do 

5: ̂ C (S) ← min { ̂  C (S) , 
∑ 

S̄ ∈P ̃
 C ( ̄S ) } 

6: end for 

7: end for 

8: end for 

In Algorithm 2 , �S denotes the set of all partitions of S . The

lgorithm computes a characteristic function value ̂ C (S) for each

oalition S sequentially from lowest to highest cardinality. The

alue assigned to S is the best among the cost computed by the

euristic for coalition S and all the costs of the partitions P in �S .

n this way, we assure that ̂ C (S) is at least as good as the cost of

ny of its partitions, thus it satisfies subadditivity. 
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4. Cost allocation and coalition formation 

4.1. Classical cost allocation methods 

As emphasized in previous literature, an important question

when firms collaborate is how to allocate the benefits of the col-

laboration among them [67] . Some of the challenges are to find

allocations that provide benefits for all firms, create no incen-

tives for firms to deviate from the collaboration, and guarantee

that the benefits are shared in a fair way. Many allocation meth-

ods based on different fairness criteria have been developed in the

literature. An early but good review can be found in [58] and a

more recent one particularly focused on collaborative transporta-

tion can be found in [33] . The allocation methods usually assume

as given the optimal value of the characteristic function for each

possible coalition, and then compute an allocation assuming the

grand coalition is formed. In what follows, we first introduce some

of these methods and, in a second approach, we develop a new

method that relaxes those assumptions. 

Let γ f be the cost allocated to the winery f . A fair allocation is

commonly required to at least fulfill the efficiency and rationality

conditions below. ∑ 

f∈ F 
γ f = C(F ) (14)

∑ 

f∈ S 
γ f ≤ C(S) ∀ S ∈ K (15)

The efficiency condition (14) states that all the cost is split

among the members of the grand coalition, and the rationality

conditions (15) provide that for all subsets of players there are no

incentives to deviate from the grand coalition. The set of alloca-

tions that satisfy efficiency and rationality is called the core of the

game. Among the many cost allocation methods proposed in the

literature, the most used are the proportional methods, the Shap-

ley value [56] , and the nucleolus [54] . Other methods have been

motivated in specific applications of collaborative logistics, such as

the Equal profit method [23] . We present these four methods be-

low. 

Proportional methods. The proportional methods are the sim-

plest. They assume that the cost of the coalition is split propor-

tionally among its members following some pre-defined rule. Thus,

to each winery it is allocated a cost γ f = ω f · C(F ) , where ω f ∈ [0,

1] ∀ f ∈ F and 

∑ 

f∈ F ω f = 1 . The ω f weight can be defined according

to different criteria. A common one is to use the stand-alone costs,

i.e., ω f = 

C({ f } ) ∑ 

f ′ ∈ F C({ f ′ } ) . 
Shapley values. This method allocates to each player f a cost

according to the following formula: 

γ f = 

∑ 

S⊆F : f∈ S 

[
(| F | − | S| )!(| S| − 1)! 

| F | ! 
]

· [ C( S ) − C(S \ { f } )] ∀ f ∈ F 

(16)

Nucleolus. Define the excess of coalition S at γ in game ( F, C ) as

ε(γ , C, S) = C(S) − ∑ 

f∈ S γ f . The excess of a coalition S at an allo-

cation γ can be interpreted as a measure of satisfaction of the

coalition with this allocation. The larger the excess of S , the more

satisfied coalition S is, in the sense that it achieves larger sav-

ings. For a game ( F, C ), define the excess vector at γ as e (γ , C) =
(ε(γ , C, S 1 ) , . . . , ε(γ , C, S p )) , where the sets S i represent the coali-

tions in K \ { F } and p = 2 | F | − 1 . We define θ ( e ( γ , C )) as the vec-

tor that results from arranging the components of the excess vec-

tor in nondecreasing order. A vector y ∈ R 

p is lexicographically

greater than ȳ (written y � ȳ ) if either y = ȳ or there exists h ∈
{ 1 , . . . , p} such that y > ȳ and y = ȳ ∀ i < h . The nucleolus F
h h i i 
f the cost sharing game ( F, C ) can be defined as F = { γ ∈ X :

(e (γ , C)) � θ (e (y, C)) ∀ y ∈ X } , where X is the set of γ satisfy-

ng efficiency and the so called individual rationality property, de-

ned as γ f ≤ C ({ f }) ∀ f ∈ F . The elements of X are called imputations.

hus, the nucleolus is the set of imputations that lexicographi-

ally maximizes the excess vector. If instead of X , the definition

bove uses X 

0 (defined as the set of payoff vectors satisfying effi-

iency condition) we call it the pre-nucleolus. For games with a

on-empty core, the pre-nucleolus coincides with the nucleolus.

ppealing well-known features of the nucleolus is that it is unique

nd that it always belongs to the core whenever this is non-empty.

ts computation is a bit more complex than applying a formula as

or the Shapley method. Several algorithms have been proposed in

he literature (see, e.g., [24] , [29] ). 

Equal profit method (EPM). Suppose the cost allocated to

layer f is γ f . Then, its relative savings compared to the stand-

lone cost is 
C({ f } ) −γ f 

C({ f } ) . Thus, the difference between the relative

avings of players f and f ′ is 
γ

f ′ 
C({ f ′ } ) −

γ f 

C({ f } ) . The EPM proposes to

nd an allocation in the core such that the maximum of the dif-

erences between relative savings is minimized. Such allocation can

e found by solving the following linear programming model. 

min � (17)

.t. � ≥ γ f ′ 

C({ f ′ } ) −
γ f 

C({ f } ) ∀ f ′ , f ∈ F (18)

 

f∈ S 
γ f ≤ C(S) ∀ S ⊂ F (19)

 

f∈ F 
γ f = C(F ) (20)

f ≥ 0 ∀ f ∈ F (21)

Objective function (17) minimizes � and constraints (18) im-

ose � as an upper bound on all pairwise differences between sav-

ngs of the players. Thus, (17) and (18) together provide � equals

he maximum of these differences. Constraints (19) and (20) im-

ose rationality and efficiency, respectively. Then, if a solution to

he model is obtained, it is an allocation in the core. Note this so-

ution is not necessarily unique [17] , a condition fulfilled by our

ethod (see Section 4 ). If the core is empty, this model is infeasi-

le. 

.2. The entropy method 

Besides testing the methods above, our paper seeks to expand

ooperative game theory applications to cases in which the charac-

eristic function is computed heuristically which might, therefore,

lter its properties. This is important in the bottling scheduling

roblem since due to its complexity in practice the implemented

olution comes from a heuristic rather than an exact optimiza-

ion approach. Contrary to the optimal approach, the characteristic

unction 

˜ C does not necessarily satisfy the subadditivity property.

iterature also suggests that cooperation in logistics is restricted

o contain just a few partners [43] , thus even when subadditivity

olds it turns relevant to not only address the cost allocation but

lso the coalition formation problem. Our attention then turns to

etermine which coalitions should be formed from a min cost per-

pective. This problem relates to the cooperative game theory con-

ept of coalition structure [5] , that is, a collection of disjoint sets of

layers whose union is the overall set of players. This problem can

e seen as a set partitioning problem which looks for the mini-

um cost partition and a cost allocation simultaneously [32] or in
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t  
wo separate subproblems [30] . In what follows, we formulate a

odel which finds the best partition and a cost allocation simulta-

eously, according to a maximum entropy criterion. 

ets 

 : set of wineries (indexed by f ). 

: set of all possible coalitions (indexed by k ). 

arameters 

 

 k ∈ R + : Approximated cost of coalition k . 

f k ∈ { 0 , 1 } : It takes value 1 if winery f belongs to coalition k . 

ariables 

z k ∈ { 0 , 1 } : It takes value 1 if coalition k is formed, and zero 

otherwise. 

γ f k ∈ R + : Cost allocated to winery f in coalition k . 

ρ f k ∈ [0 , 1] : Proportion of cost allocated to winery f in coalition k . 

The following mixed integer non-linear optimization problem

eeks for a structure such that all coalitions are stable. The objec-

ive is to maximize for each formed coalition the Shannon’s mea-

ure of entropy [55] , which can be viewed as a proxy of equity. 

ax −
∑ 

k ∈K 

∑ 

f∈ F 
ρ f k · ln (ρ f k ) (22) 

 

f∈ F 

( 

α f k ·
∑ 

k̄ ∈K 
γ

f ̄k 

) 

≤ ˜ C k ∀ k ∈ K (23) 

 

f∈ F 
α f k · γ f k = 

˜ C k · z k ∀ k ∈ K (24) 

 

k ∈K 
α f k · z k = 1 ∀ f ∈ F (25) 

f k = ρ f k · ˜ C k ∀ f ∈ F , k ∈ K (26) 

 

f∈ F 
ρ f k ≤ z k ∀ k ∈ K (27) 

 

f∈ F 
(1 − α f k ) · ρ f k ≤ 1 − z k ∀ k ∈ K (28) 

f k ≥ 0 , z k ∈ { 0 , 1 } , ρ f k ∈ [0 , 1] ∀ f ∈ F , k ∈ K (29) 

Constraints (23) state the strong rationality condition. Con-

traints (24) state the efficiency condition for all formed coalitions.

onstraints (25) state that each winery must be assigned to ex-

ctly one coalition. Constraints (26) establish the relationship be-

ween cost allocation and the proportion of cost allocated. Con-

traints (27) state that cost splitting can be developed only within

 formed coalition. Constraints (28) are logical relationships which,

ogether with (24) and (26) , provide that the cost allocation is per-

ormed only among the members of a formed coalition. Constraints

29) establish the nature of variables γ and z , and bounds on ρ . 

Without constraints, the objective function (22) is optimized

hen all the wineries received the same percentage of the cost

f the coalition [ [55] , pp. 11]. If this is not possible due to sta-

ility constraints, our model seeks to make the members of each

oalition as equals as possible while satisfying rationality. This fol-

ows an egalitarian principle which has caught particular interest
n recent years, especially in domains of cooperation where the

haracteristic function is affected [53] . Our equity method does not

ake into account the stand-alone cost of each winery of the coali-

ion as, for example, the EPM does. This is done on purpose be-

ause for real instances the stand-alone cost is highly dependent

n the heuristic approach to compute the characteristic function.

his could imply some wineries to have an approximated cost ex-

remely high compared to the optimal cost, affecting the outcome

f the cost allocation method. 

We end this section with the following two propositions about

he proposed model. 

roposition 4.1. The coalition structure given by the entropy method

ptimization problem minimizes the sum of overall costs. 

roof. Let us suppose that a partition Z ⊆ K of F is the op-

imal coalition structure given by the entropy method opti-

ization problem. That is z k = 1 ∀ k ∈ Z and z k = 0 ∀ k ∈ K \
and 

∑ 

k ∈Z α f k = 1 ∀ f ∈ F . By contradiction suppose that

his partition does not minimize the overall cost. That im-

lies there exist a partition Z such that 
∑ 

k ∈Z ̃  C k > 

∑ 

k ∈ Z ̃  C k .

he left-hand side in (24) can be replaced by 
∑ 

k ∈Z ̃  C k =
 

k ∈Z 
∑ 

f∈ F α f k γ f k = 

∑ 

k ∈Z 
∑ 

f∈ F γ f k ( ∗). The last equality is valid

ecause of equation (28) we have γ f k = 0 ∀ f ∈ F , k ∈ K : α f k = 0 .

rom (23) , it holds that 
∑ 

k ∈ Z ̃  C k ≥
∑ 

k ∈ Z [ 
∑ 

f∈ F 
(
α f k ·

∑ 

k̄ ∈K γ f ̄k 

)
] =

 

k ∈ Z 
∑ 

f∈ F 
(
α f k ·

∑ 

k̄ ∈Z γ f ̄k 

)
= 

∑ 

f∈ F 
∑ 

k̄ ∈Z [ γ f ̄k 

∑ 

k ∈ Z α f k ] . Since the

oalitions of Z are a partition of F then for a fixed f we have that
 

k ∈ Z α f k = 1 so 
∑ 

k ∈ Z ̃  C k ≥
∑ 

f∈ F 
∑ 

k̄ ∈Z γ f ̄k 
which it is a contradic-

ion with ( ∗). 

The result in Proposition 4.1 is important to assure that the

oalition structure achieves all the potential savings of the collab-

ration. Otherwise, there could be opportunities for a subset of

layers to look for other structures which would render them with

ore savings. �

roposition 4.2. Given a feasible coalition structure z ∗ the cost al-

ocated to each winery of the formed coalitions under the entropy

ethod γ ∗ is unique. 

roof. Let Z ⊆ K be a feasible partition of F . Considering both

f k ′ = 0 ∀ f ∈ F , k ′ ∈ K \ Z and ρ f k ′′ = 0 ∀ f ∈ F , k ′′ ∈ K : α f k ′′ = 0 ,

he reduced feasible (cost proportion) allocation set D (Z) is given

y the intersection of the following two compact and convex sets: 

 1 = { ρ f k ∈ R 

| F |×|Z| | 0 ≤ ρ f k ≤ 1 , 
∑ 

f∈ F 
ρ f k = 1 ∀ k ∈ Z } 

 2 = { ρ f k ∈ R 

| F |×|Z| | 0 ≤ ρ f k ≤ 1 , 
∑ 

f∈ F 

∑ 

ˆ k ∈Z 
α f k ρ f ̂ k ̃

 C ˆ k ≤ ˜ C k ∀ k ∈ K } 

t can be shown that H(ρ) = − ∑ 

f∈ F 
∑ 

k ∈ K ρ f ̄k 
· ln (ρ

f ̄k 
) is strictly

oncave on D 1 . Then H ( ρ) is strictly concave on D (Z) =
 j∈{ 1 , 2 } D j ⊆ D 1 , which is also both compact and convex. Recall that

n a convex set a strictly concave function has at most one global

aximum. Now suppose that D (Z) is not empty. Since D (Z) is

ompact and H ( ρ) is continuous, H ( ρ) achieves a maximum on

 (Z) . Therefore, the set of maximizers is a singleton { ρ∗ }, and by

26) , the allocation of cost γ ∗ must be unique. 

The result of Proposition 4.2 is remarkable because it avoids the

mbiguity of having two or more different solutions and thus pre-

ents an arbitrary choice [17] . �

.3. Addressing priority issues 

In Subsection 4.2 we propose a novel cost allocation and coali-

ion formation model. Our procedure seeks to allocate the costs as
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Table 1 

Characteristic function. 

S {1} {2} {3} {4} {1,2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4} 

C ( S ) 3 7 11 7 10 13 10 15 12 18 17 15 19 21 24 

Table 2 

Cost for each firm obtained by different allocation methods. 

Firm Proportional Shapley Nucleolus EPM 

1 2.6 2.7 3 3 

2 6 5.3 5 5 

3 9.4 9.5 9 9 

4 6 6.5 7 7 
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equal as possible among the wineries satisfying stability and ratio-

nality constraints. That is, all the wineries are treated equally. Nev-

ertheless, depending on the negotiation some priorities could be

given to some wineries depending on criteria such as size, the vol-

ume produced, operational costs and so on. Let us define a param-

eter q f > 0 representing the priority of the winery f ∈ F . Lower val-

ues of q f implies a higher priority of the winery f ∈ F , thus, a lower

cost allocation if possible. Following the minimum cross-entropy

idea [57] the model of Subsection 4.2 could be extended by chang-

ing the objective function by: 

max −
∑ 

k ∈K 

∑ 

f∈ F 
ρ f k · ln 

(
ρ f k 

q f k 

)
where q f k = 

q f ∑ 

f ′ ∈ F α f ′ k q f ′ 
corresponds to the priority weight of

winery f in coalition k . It can be easily shown that if there are no

constraints, the proportion of cost allocated to winery f in coali-

tion k is q fk . We conclude this section pointing out that both

Propositions 4.1 and 4.2 also hold in this case with priorities.

First, note that the objective function is not used in the proof of

Proposition 4.1 . Thus, the proposition also holds in this case. Sec-

ond, the objective function with priorities remains strictly concave

on D (Z) and, therefore, Proposition 4.2 also holds in this case. 

5. Numerical results 

In this section, we perform some numerical experiments apply-

ing all models and methods from the previous sections. First, in

a detailed example, we compute the optimal solution for the ex-

act game and the corresponding allocations by the proportional

method, Shapley value, Nucleolus, and EPM. The example is use-

ful to illustrate how these concepts apply to the collaborative bot-

tling scheduling problem. We also apply the heuristic and repair-

ing procedure to this example, which is helpful to illustrate how

the subadditivity property can be missed and recovered when in-

stead of the exact approach the characteristic function values are

just an approximation of the optimal values. We then perform ex-

periments in additional randomly generated instances. 

We have coded all models and methods in AMPL. For the linear

formulations, we use the solver CPLEX 12.8.0.0. For the non-linear

entropy model, we use the solver Artelis Knitro 10.3.0. The runs

have been performed on a PC with an Intel(R) Core(TM) i7-7700HQ

CPU@ 2.80 GHz processor and 16 GB RAM, each of them finishing

in less than 20 minutes. 

5.1. Illustrative example 

We illustrate the application of all models and methods in a nu-

merical example with four players. The data for one player comes
rom one of the three largest Chilean wineries in terms of export

olume. 

We took information of one day in which long jobs are carried

ut at this winery, and then we randomly generated data following

he same structure for the other three players in the example. Each

layer has three jobs and one production line with the same char-

cteristics (homogeneous production lines). Thus, setup and pro-

essing times are the same for all the wineries. The deadlines for

ach job of the three other players were randomly generated by a

iscrete uniform random variable in an interval [1,8]. The data is

resented in Appendix B . Fig. 3 shows the resulting optimal sched-

le for the stand-alone cases and the grand coalition. The num-

er in parentheses indicates the delay of each job. The total time

aved is 4 units which correspond to a relative saving of 16.67%.

he characteristic function for each coalition is shown in Table 1 ,

hereas Table 2 shows the cost allocated to each winery by the

our cost allocation methods defined for the exact game. 

The characteristic function 

˜ C computed by the greedy heuris-

ic for the same illustrative example is shown in Table 3 . Note

hat ˜ C ({ 1 , 2 , 3 , 4 } ) > ̃

 C ({ 1 , 4 } ) + ̃

 C ({ 2 , 3 } ) . Thus, if the grand coali-

ion would be formed, players would have incentives to break it,

orming {1, 4} and {2, 3}. Therefore, the grand coalition is not sta-

le. This is a counter-example that proves the subadditivity prop-

rty does not necessarily hold in the approximated version of the

ame. The entropy model for the approximated characteristic func-

ion 

˜ C provides as result precisely the coalitions {1, 4} and {2, 3},

ogether with cost allocation γ1 = 6 , γ4 = 8 and γ2 = 9 , γ3 = 13 . 

We also applied the entropy method ( Table 4 ) for the re-

aired characteristic function 

ˆ C defined by Algorithm 2 (the char-

cteristic function values modified by this algorithm in compari-

on to Table 3 appear underlined). In this case, the model pro-

ides as result the same coalitions than before, namely, {1, 4} and

2, 3} with the same allocated costs. This is an interesting re-

ult because by construction 

ˆ C satisfied the subadditivity property,

o one could think that the grand coalition should form. As ex-

ected by Proposition 4.1 , the grand coalition and the partition

1, 4} and {2, 3} have the same overall cost, namely, 36. Never-

heless, the partition {1, 4} and {2, 3} provides more equity ac-

ording to the entropy objective function. This last solution has

n objective function of 1.360 compared to 1.348 of the grand

oalition. 

.2. Further experimental results 

We have randomly generated R = 100 instances similar to the

llustrative case but with non-homogenous production lines. Each

nstance has 4 wineries with 3 jobs and 1 bottling line each. We

et M = 240 and the value of parameters t n , rc n, l , setup n,n ′ ,l are

enerated by a discrete uniform random variable in an interval [ a,

 ], where a = 1 for all of them, and b is equal to 8, 4, and 3, re-

pectively. Since 15 different coalitions can be formed from the set

f 4 wineries, the 100 instances involve solving 1500 scheduling

roblems. 

The main findings of our experimental results are the follow-

ng. Compared to the heuristical stand-alone situation, the delay

osts decrease by 33.4% on average (95% percent confidence inter-

al [30.9%, 35.9%]). This average value was computed by the for-
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Fig. 3. Illustrative results for the stand-alone versus grand coalition solution. 

Table 3 

Characteristic function using Algorithm 1 (with α = 1 . 7 ). 

S {1} {2} {3} {4} {1,2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4} ˜ C (S) 6 15 17 11 15 29 14 22 21 33 28 42 50 42 92 

Table 4 

Characteristic function using Algorithm 1 (with α = 1 . 7 ) modified as to satisfy subadditivity by Algorithm 2 . 

S {1} {2} {3} {4} {1,2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4} ̂ C (S) 6 15 17 11 15 23 14 22 21 28 28 26 31 33 36 

Fig. 4. Cost reduction histogram. 
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ula: 

1 

R · | F | 
R ∑ 

r=1 

∑ 

f∈ F 

˜ C r ({ f } ) − γ f,r ˜ C r ({ f } ) (30) 

here γ f, r is the cost allocated by the entropy method to the firm

 in the instance r and 

˜ C r ({ f } ) is the approximated characteristic

unction for instance r computed by the heuristic. The dispersion

f the cost reduction is shown in the Fig. 4 . 

Table 5 shows the number of times each coalition is formed and

he percentage that this number represents over the overall sum
f these numbers. Table 6 shows the number of coalitions formed

er instance, expressed as a percentage over the total number of

nstances. This reveals that the grand coalition forms in 39% of the

nstances, while the full non-collaborative situation never happens.

he most preferred coalition structures include two coalitions. 

Table 7 displays some important outcomes for the entropy

ethod depending on the coalition size. The Number of Wineries

ow corresponds to the number of wineries belonging to a coali-

ion of a given size. For example, 86 out of the 400 wineries belong

o a coalition of size 2. The Mean Proportion of the Cost row corre-
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Table 5 

Coalition formation frequency. 

S {1} {2} {3} {4} {1,2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4} Total 

Frequency 11 16 12 11 6 7 7 7 6 10 9 11 10 10 39 172 

Percentage (%) 6.4 9.3 7.0 6.4 3.5 4.1 4.1 4.1 3.5 5.8 5.2 6.4 5.8 5.8 22.6 100 

Table 6 

Number of coalitions per instance. 

Number of coalitions per instance 1 2 3 4 

Frequency (%) 39.0 54.0 7.0 0.0 

Table 7 

Cost information per winery in function of the coalition size. 

Coalition size 1 2 3 4 

Number of wineries 50 86 108 156 

Mean proportion of the cost (%) 100.00 50.00 33.32 25.00 

Mean optimal cost 7.86 9.16 9.52 10.21 

Mean heuristical cost 9.12 12.00 12.70 13.14 

Mean allocated cost 9.12 7.51 7.39 7.23 

Heuristical cost reduction (%) 0 34.3 38.8 39.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Number of coalitions per instance for the entropy method applied to 
ˆ C . 

Number of coalitions per instance 1 2 3 4 

Frequency (%) 85.0 15.0 0.0 0.0 

Table 10 

Cost information per winery in function of the coalition size or the entropy 

method applied to ˆ C . 

Coalition size 1 2 3 4 

Number of wineries 1 56 3 340 

Mean proportion of the cost (%) 100.00 50.00 33.33 25.00 

Mean optimal cost 21.00 8.80 7.33 9.61 

Mean heuristical cost 22.00 12.40 10.00 12.41 

Mean allocated cost 22.00 8.20 4.30 7.60 

Heuristical cost reduction (%) 0.00 33.87 57.00 38.76 
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d  
sponds to the average percentage of the total cost of the coalition

allocated to each winery. The Mean Optimal Cost row corresponds

to the average optimal stand-alone cost computed for each winery

by the MIP model described in Section 3.1 . The Mean Heuristical

Cost row corresponds to the average cost allocated to each win-

ery by the heuristic described in Section 3.4 . The Mean Allocated

Cost row corresponds to the average cost allocated to each win-

ery by the entropy method. Finally, the Heuristical Cost Reduction

row corresponds to the percentage of cost reduction of the en-

tropy method compared with the heuristical stand-alone situation,

which represents the improvement achieved by the wineries due

to the collaboration assuming that they schedule their jobs using

the heuristic presented in this paper. 

Conclusions can be drawn from Table 7 . The heuristical cost re-

duction per winery increases as the coalition size increases. This

is an expected result since if larger coalitions are feasible for the

entropy method, the potential benefits of collaboration increase.

When collaboration occurs (coalition size greater than 1), the aver-

age cost allocated to each winery in the collaborative environment

is less than the optimal stand-alone cost. Moreover, in this situ-

ation the average cost reduction compared to the optimal stand-

alone cost is 10.44%. This is an appealing result since in real situa-

tions the optimum is not even computable. As it is shown in row

Mean Proportion of the Cost , on average the cost of each coalition is

equally split among its members which is one of the main aims of

the entropy method. 

We also applied the entropy method for the repaired character-

istic function 

ˆ C . The results are shown in Tables 8 , 9 and 10 . The

most interesting finding is that even though 

ˆ C satisfies the subad-

ditivity property, the grand coalition does not form in all cases. In

fact, in the 15% of the cases, the grand coalition is outperformed

by a structure composed of two coalitions, in which, it is possible

to split the costs more equitably. 
Table 8 

Coalition formation frequency for the entropy method applied to ˆ C . 

S {1} {2} {3} {4} {1,2} {1, 3} {1, 4} {2, 3} {2, 

Frequency 0 0 0 1 6 5 3 3 5 

Percentage (%) 0.0 0.0 0 0.0 0.9 5.2 4.3 2.6 2.6 4.3
.3. Homogeneous production lines 

The benefits of collaboration in the wine bottling job schedul-

ng problem depend on the homogeneity of the data, for example,

n the differences among the production lines. More specifically,

f the values of the parameters setup n,n ′ ,l and rc n, l are highly line

ependent then the impact of collaboration increases because it

s possible to reduce delay costs by accommodating jobs in other

ore appropriate lines. 

In this subsection, we analyze the limitations of the proposed

ollaborative scheme by analyzing the worst case scenario, that

s, when all the wineries have identical production lines. To ad-

ress this situation, we conducted R = 10 new instances similar

o the illustrative case. As the previous subsection, each instance

as 4 wineries with 3 jobs and 1 identical bottling line each. We

et M = 240 and the value of parameters t n , rc n, l , setup n,n ′ ,l are

enerated by a discrete uniform random variable in an interval

 a, b ], where a = 1 for all of them, and b is equal to 8, 4, and 3,

espectively. As opposed to Subsection 5.2 , we impose that the

rocessing times and setup times are not line dependent, that is,

c n,l = rc n,l ′ and setup n,n ′ ,l = setup n,n ′ ,l ′ ∀ l , l ′ ∈ L, ∀ n, n ′ ∈ N. Using

quation (30) , we compute the mean percentage cost reduction of

he entropy method compared with the heuristical stand-alone sit-

ation for this new data set instance. In this situation, we obtain

hat delay costs decrease by 9.6%. 

We remark, however, that an identical production line envi-

onment is unlikely to occur in practice. Job processing times are

ine dependent because production lines are usually specialized in

ome packaging format (e.g., 0.75 L or 1.5 L bottles; agglomerated

r synthetic cork). As [44] asserts, the number of bottling lines can

e over 10, and they can differ in their capacity and the types of

roducts that can be bottled. Setup times are highly job, and line

ependent since dry materials (bottles, corks, and labels) need to
4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4} Total 

6 1 0 0 0 85 115 

 5.2 0.9 0.0 0.0 0.0 73.9 100 
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Table 11 

Computational times for larger instances (in secs). 

Firms \ Jobs 5 10 20 40 80 160 

4 2.86 36.13 351.14 5,462.38 72,358.80 > 86, 400.00 

5 10.49 154.29 1,984.07 23,186.17 > 86, 400.00 > 86, 400.00 

6 56.15 258.39 6,242.56 > 86, 400.00 > 86, 400.00 > 86, 400.00 

7 324.19 1,895.84 19,839.58 > 86, 400.00 > 86, 400.00 > 86, 400.00 
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e changed and prepared depending on the sequence. For instance,

f two consecutive jobs have the same cork, the setup time will be

ess than if they have to change it. The same happens with the

ottles and the labels. Those changes can be made faster or slower

epending on the machine. 

Finally, although our focus has been to analyze cooperation tak-

ng as given the characteristic function values computed by the

euristic rather than exploring its performance, we report on the

omputational times to find these values in instances with differ-

nt numbers of players and jobs in Table 11 . 

When setting a time limit of one day (86,400 seconds), the

euristic can find solutions in instances with up to 80 jobs, when

he number of players is four as in all our previous experiments.

ncreasing the number of players up to seven harms the possibili-

ies to find solutions quickly for instances above 20 jobs. 

.4. Heuristic improvement 

Depending on the context and instances, the performance of

euristic approaches could lead to better or worse solutions. In

his section, we analyze what happens to our procedure when

e improve the heuristic output through a metaheuristic. To do

o, we implement a simplified version of the local branching (LB)

cheme of Fischetti and Lodi [21] , which has proved to be useful

n a variety of applications (see, e.g. Rodríguez-Martín and Salazar-

onzález [51] ). This is in the spirit of well-known local search

etaheuristics. For a description of local search strategies, see Pir-

ot [47] . Other general-purpose MIP heuristics using related ap-

roaches can be found in Lokketangen and Glover [42] and Hansen

t al. [34] . Our local search utilizes a general MIP solver to ex-

lore the neighborhoods obtained through the introduction of in-

alid linear inequalities called local branching cuts. Specifically, we

sed the following cuts to reduce the solution space: ∑ 

l∈ LS, n ∈ NS: ̂ x n,l =0 

x n,l + 

∑ 

l∈ LS, n ∈ NS: ̂ x n,l =1 

(1 − x n,l ) 

+ 

∑ 

n,m ∈ NS: ̂ y n,m =0 

y n,m 

+ 

∑ 

n,m ∈ NS: ̂ y n,m =1 

(1 − y n,m 

) ≤ K s (31) 

here both ˆ x n,l and ˆ y n,m 

define a feasible solution, and K s denotes

he neighborhood size. The left hand side of (31) represents the

amming distance between ( x, y ) and ( ̂  x , ̂  y ) , which is denoted by

( ̂ x , ̂ y ) (x, y ) . The simplified version of the Fischetti and Lodi [21] ap-

roach that we implement is described in Algorithm 3 below. 

The general idea of Algorithm 3 is to explore the neighborhood

f the best solution found so far using a state-of-the-art solver

CPLEX) within a time limit (at most T node ). If a better solution is

ound, it becomes the new incumbent solution and the neighbor-

ood size and exploring time are reversed to their default values

 K min and T min , respectively). If the time limit is reached with no

mproved solution, a diversification step is applied to enlarge the

urrent neighborhood size (in K step ) and to explore it for a larger

ime (at most T step ). The procedure is repeated until the total time

imit ( T max ) or the maximum number of iterations allowed ( N max )

s exceeded. 

We use the 1500 problems from the 100 instances described in

ubsection 5.2 to analyze how the results behave for both the re-

aired and not repaired characteristic function when the greedy
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Algorithm 3 Local branching scheme. 

1: Let ˆ x inc , ˆ y inc , f inc ← Algorithm 1 (Section 3.4) 

2: Define K min , K step , T min , T step , T max and N max (user) 

3: Let T start ← T ime () , T node ← T min , K s ← K min , N iter ← 0 and 

N stop ← false 

4: Add δ( ̂ x inc , ̂ y inc ) 
(x, y ) ≤ K s to the collaborative bottling scheduling 

problem (Section 3.1). Let the constrained problem be denoted 

as P ( ̂  x inc , ̂  y inc , K s ) . 

5: while T ime () − T start ≤ T max and N stop = false do 

6: Let x̄ cur , ȳ cur , f cur ← Solve( P ( ̂  x inc , ̂  y inc , K s ) , CPLEX, T node ) 

7: if f curr < f inc then 

8: Let ˆ x inc ← x̄ cur , ˆ y inc ← ȳ cur , f inc ← f cur 

9: Let K s ← K min , T node ← T min 

10: else 

11: K s ← K s + K step , T node ← T node + T step 

12: end if 

13: Let N iter ← N iter + 1 

14: if N iter = N max then 

15: N stop ← true 

16: end if 

17: end while 

Table 13 

Number of coalitions as percentage of the total feasi- 

ble instances. 

Approach 1 2 3 4 

( ̃  C , greedy + LB 1 ) 50.5 45.1 4.4 0.0 

( ̂  C (S) , greedy + LB 1 ) 83.1 16.9 0.0 0.0 

( ̃  C , greedy + LB 2 ) 75.7 24.3 0.0 0.0 

( ̂  C (S) , greedy + LB 2 ) 91.8 8.2 0.0 0.0 
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heuristic is coupled with this local branching scheme. We ana-

lyze two settings which differ in the number of maximum neigh-

borhood explorations: K min = 2 , K step = 2 , T min = 4 (sec), T step = 2

(sec), T max = 15 (sec), and N max ∈ { 2 , 10 } . We refer as LB 1 when

N max = 2 , and LB 2 when N max = 10 . We have also solved to opti-

mality all these problems, by running the MIP model without time

limit. It is noteworthy that the solution time to reach optimal-

ity can be prohibitively large, often in the order of several hours

and some cases up to a couple of days. In contrast, the improved

heuristic can find good quality solutions in much shorter times. In

62.0% of the instances, the optimality gap is less than 1%. Account-

ing for all the instances, the optimality gap is on average 7.4%. The

computational times to arrive at this solutions is just a few sec-

onds, as the time limits above have been set to at most 15 seconds.

As for the coalitions formed and the costs, a summary of the re-

sults is presented in Tables 12 , 13 and 14 . In the approach descrip-

tion, we denote first whether the entropy method is applied to

the game with characteristic function value ˜ C or ̂ C , and second the

maximum number of iterations used by the heuristic improvement

(thus, for example, ( ̃  C , greedy + LB 1 ) denotes the heuristic improve-

ment on function 

˜ C with maximum number of iterations equal to

LB 1 ). With these four different settings for the 1500 problems, the

improved heuristic has been run 60 0 0 times. Because of the im-

possibility to satisfy the strong rationality constraints (23) , some

of the 100 instances turn infeasible. In the calculation of percent-

ages, we take as a basis only the instances with feasible solutions. 

Contrasting these results with those obtained in Subsection 5.2 ,

the results in Tables 12 and 13 indicate that the improved heuris-

tic conduces to a larger frequency in the formation of the grand

coalition. This trend is stressed when using a better approxima-

tion of the characteristic function ( ̂  C instead of ˜ C ) and a larger

maximum number of iterations ( LB 2 instead of LB 1 ). These obser-

vations are reasonable, as when the solutions get closer to opti-
al, we would expect the grand coalition to achieve more savings

han other structures. Note, however, that there are still many in-

tances (ranging from 49.5 to 8.2%) where the coalition structure

hat forms differs from the grand coalition. This occurs because

here are partitions that allow achieving as much savings as the

rand coalition and, besides, they allow to find allocations with

reater equity than the grand coalition. 

A comparison of the values in rows Mean Optimal Cost and

ean Heuristical Cost of Table 14 , shows that the heuristic improve-

ents conduce to very close to optimal costs. More important, the

avings due to collaboration (displayed in row Heuristical Cost Re-

uction ) range from 37.50 to 60.84%, which are in general more

ignificant than those obtained in Subsection 5.2 . Overall, when

pportunities for collaboration exist, the entropy method shows

ffectiveness in finding coalition structures and stable allocations

hat leave all players with significant savings with respect to their

tand-alone costs and with no incentives to deviate from the col-

aboration. 

. Concluding remarks 

We have studied collaborative job scheduling in the wine bot-

ling problem, by combining methods of mixed integer program-

ing and cooperative game theory. We have shown that the

rand coalition is, theoretically, better than (or equal to) the non-

ollaborative solution and any other coalition structure. However,

s shown in our numerical results, structures in which firms col-

aborate within smaller sets may behave better than the grand

oalition when the solutions to the bottling scheduling problem

re found through heuristics. Literature and real cases have shown

hat big coalitions are more likely to fail [16,22,43] . Our results

ay help to explain this discrepancy between theory and reality. 

Based on a maximum entropy principle, a new method pro-

osed in this paper allows to deal with both coalition formation

nd cost allocation problems simultaneously, in contrast to the

ost traditional methods that only cope with the latter. To our

nowledge, this is the first article studying collaboration in wine

roduction. Overall, we find that collaboration may be useful for

ineries to reduce their costs and increase their service levels.

his is not only supported by the theoretical foundation devel-

ped in Sections 3 and 4 , but also for our numerical experiments

n Section 5 , where the decrease in delays averages from 33.4 to

6.9% when improvement heuristic solutions are used. Our work

dentifies the wine industry as especially suitable for such a collab-

rative approach to be implementable in practice, because winer-

es’ facilities are often concentrated within nearby regions and

ome of the wine production processes are standard. Moreover, our

roposed method takes into account the difficulties of generating a

ottling schedule and includes several factors that belong to wine

ecision making such as setups highly sequence dependent. Given

he high competition in international markets, finding ways to im-

rove the margins and service levels can be crucial for the success

f wine producers. In this line, our work provides the following

anagerial insights: 

• Collaborating with different companies can help to reduce the

costs in wine bottling. Thus, it turns relevant for managers to

attempt getting agreements for cooperation with other wine

producers. 
• As the overall result by a group of companies in collaboration

may be better than the sum of its separate parts, it is relevant

for managers to include in their agreements a fair way to split

the benefits of the cooperation. Our article has shown how dif-

ferent methods can deal with this problem, according to differ-

ent notions of fairness. 



F. Basso, M. Guajardo and M. Varas / Omega 91 (2020) 102021 13 

Table 14 

Cost information per winery in function of the coalition size or the entropy method. 

Coalition size 1 2 3 4 

( ̃  C , greedy + LB 1 ) Number of wineries 36 60 84 184 

Mean proportion of the cost (%) 100.00 50.00 33.12 25.21 

Mean optimal cost 6.55 9.23 9.48 10.21 

Mean heuristical cost 6.66 9.53 9.88 10.43 

Mean allocated cost 6.66 5.50 5.60 5.40 

Heuristical cost reduction (%) 0.00 42.28 43.31 48.22 

( ̂  C (S) , greedy + LB 1 ) Number of wineries 1 44 3 236 

Mean proportion of the cost (%) 100.00 50.00 33.33 25.02 

Mean optimal cost 21.00 9.00 7.33 9.72 

Mean heuristical cost 22.00 9.34 7.66 9.99 

Mean allocated cost 22.00 5.30 3.00 5.50 

Heuristical cost reduction (%) 0.00 43.25 60.84 49.94 

( ̃  C , greedy + LB 2 ) Number of wineries 9 32 91 212 

Mean proportion of the cost (%) 100.00 49.87 33.32 24.98 

Mean optimal cost 4.22 8.41 11.26 10.21 

Mean heuristical cost 4.22 8.41 11.26 10.21 

Mean allocated cost 4.22 4.50 4.60 4.20 

Heuristical cost reduction (%) 0.00 46.49 59.15 58.86 

( ̂  C (S) , greedy + LB 2 ) Number of wineries 0 20 0 224 

Mean proportion of the cost (%) - 50.00 - 25.00 

Mean optimal cost - 8.00 - 10.14 

Mean heuristical cost - 8.00 - 10.14 

Mean allocated cost - 5.00 - 4.19 

Heuristical cost reduction (%) - 37.5 - 58.68 
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• Since managerial decisions in practice are often driven by

heuristic rather than optimal approaches, some fundamental

properties of collaboration can be broken. We have shown how

the subadditivity property of a cooperative game can be af-

fected when the characteristic function is an approximation in-

stead of an exact solution to the underlying optimization prob-

lem. As we have done in this article, devising a repairing proce-

dure to recover such properties or designing a method tailored

to the approximated situation, may turn useful for managers to

address this situation in practice. 
• While collective initiatives attempt to gather effort s from many

companies in the same industry (such as Wines of Chile ), both

practice and previous literature have indicated that cooperation

usually involves just a few partners [7] . Thus, from an overall

industry perspective, it becomes interesting to not only find

ways to split the benefits of collaboration but also to iden-

tify groups of companies within an industry to form coalitions.

We have addressed this as a coalition structure problem, using

stability principles from cooperative game theory, that might

become important for managers when selecting partners and

keeping the incentives for all of them to stay in the coalition. 

While we focused on the bottling scheduling problem, study-

ng collaboration in other problems related to wine production re-

ains an interesting challenge. One of these, for example, is how

ifferent wineries could join forces to negotiate better rates with

he shipping carriers that transport the wine from their regions to

he international markets. Recent approaches for this problem in

ther contexts have been provided in [66] and [60] . Although we

eglected the transportation costs, due to the proximity of winer-

es within their region, in other cases one could introduce these

osts into the analysis following approaches on collaborative trans-

ortation recently reviewed in [33] . Another problem where winer-

es have potential for collaboration is in their inventory manage-

ent efforts, for example, by sharing capacity in a warehouse [49] .

ineries from the same region may also collaborate by advertis-

ng their wines together in other markets, for which the literature

lso offers a vast number of approaches [36,37,68] . From a practi-

al point of view, in all of these problems it turns interesting to dig
urther in applied settings such as the case-based analytical mod-

ling in the wine industry provided by [63] and [64] . 

Besides wineries, our work may expand to other industries and

pplications. In this respect, the maximum entropy method that

e proposed for the approximated game in this article could be

ested in other problems of coalition formation and cost allocation,

uch as collaborative vehicle routing and inventory sharing. Deal-

ng with the approximate game turns particularly important when

he number of firms grows because the number of coalitions grows

xponentially. In problems where computing the optimal solution

or a single instance is already complicated, solving such expo-

ential number of instances is practically impossible. Thus, study-

ng approximated versions of the cooperative game and designing

ethods for it may become essential to implement the collabora-

ion. In our numerical results, when using the greedy heuristic, the

rand coalition was the best solution in only 39% of the cases, even

hough the exact game was proved to be subadditive. This percent-

ge grows as the heuristic is improved, reaching from 50.5 to 91.8%

n our experiments with the local branching heuristic. Since most

iterature in collaborative logistics so far has focused on the allo-

ation of costs assuming the grand coalition is formed, our results

how the importance of further investigation in coalition structures

here this assumption is broken. 
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ppendix A 

roof of Proposition 3.1. Let consider two coalitions S, T ∈ K. By

efinition 

 S∪ T = 

⋃ 

f∈ S∪ T 
N f , L S∪ T = 

⋃ 

f∈ S∪ T 
L f 



14 F. Basso, M. Guajardo and M. Varas / Omega 91 (2020) 102021 

 

 

 

 

C

 

Table B.3 

Setups for line i ∈ {1, 2, 3, 4}. 

setup n,n ′ ,i 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 3 3 3 3 1 2 2 3 3 

2 1 3 1 3 3 3 2 2 3 3 1 2 

3 3 1 2 2 1 2 3 3 2 3 1 3 

4 3 1 2 1 3 1 3 3 3 1 3 1 

5 2 1 1 3 1 2 3 3 1 2 3 2 

6 3 2 3 3 3 3 1 3 1 1 1 3 

7 1 1 3 3 3 3 1 3 2 1 2 2 

8 3 1 1 3 2 2 1 1 3 3 1 1 

9 1 2 2 1 3 1 2 1 2 1 1 2 

10 3 2 3 2 1 3 3 2 2 3 3 2 

11 2 3 1 3 2 1 2 1 2 1 3 3 

12 3 2 2 2 1 1 3 2 1 2 1 3 

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This implies 

N S , N T ⊆ N S∪ T 

L S , L T ⊆ L S∪ T 

Given an optimal vector ( g S , o S , u S , x S , y S , yj S ) for (O S ) and an

optimal vector ( g T , o T , u T , x T , y T , yj T ) for (O T ) since N S ∩ N T = ∅ , L S ∩
L T = ∅ we can obtain a feasible solution ( g S ∪ T , o S ∪ T , u S ∪ T , x S ∪ T ,
y S ∪ T , yj S ∪ T ) for (O S∪ T ) by the following formula: 

g S∪ T 
n = g S n · 1 N S (n ) + g T n · 1 N T (n ) ∀ n ∈ N S ∪ N T 

o S∪ T 
n = o S n · 1 N S (n ) + o T n · 1 N T (n ) ∀ n ∈ N S ∪ N T 

u 

S∪ T 
n = u 

S 
n · 1 N S (n ) + u 

T 
n · 1 N T (n ) ∀ n ∈ N S ∪ N T 

x S∪ T 
n,l = x S n,l · 1 N S (n ) · 1 L S (l) + x T n,l · 1 N T (n ) · 1 L T (l) 

∀ n ∈ N S ∪ N T , l ∈ L S ∪ L T 

y S∪ T 
n,n ′ = y S n,n ′ · 1 N S (n ) · 1 N S (n 

′ ) + y T n,n ′ · 1 N T (n ) · 1 N T (n 

′ ) 
∀ n, n 

′ ∈ N S ∪ N T 

y j S∪ T 
n,n ′ = y j S n,n ′ · 1 N S (n ) · 1 N S (n 

′ ) + y j T n,n ′ · 1 N T (n ) · 1 N T (n 

′ ) 
∀ n, n 

′ ∈ N S ∪ N T 

Since ( g S ∪ T , o S ∪ T , u S ∪ T , x S ∪ T , y S ∪ T , yj S ∪ T ) it is a feasible solution

for (O S∪ T ) then 

(S ∪ T ) ≤
∑ 

n ∈ N S∪ T 

u 

S∪ T 
n 

= 

∑ 

n ∈ N S∪ T 

(u 

S 
n · 1 N S (n ) + u 

T 
n · 1 N T (n )) 

= 

∑ 

n ∈ N S∪ T 

u 

S 
n · 1 N S (n ) + 

∑ 

n ∈ N S∪ T 

u 

T 
n · 1 N T (n ) 

= 

∑ 

n ∈ N S 
u 

S 
n + 

∑ 

n ∈ N T 
u 

T 
n 

= C(S) + C(T ) 

�

Appendix B. Illustrative example data 

The following Tables B.1–B.3 show the data used in our illustra-

tive example in Section 5.1 . In this case, M was set at 240. 
Table B.1 

Sets. 

Set Cardinality 

F 4 

N f 3 

L f 1 

Table B.2 

Job parameters. 

( n ) ( f ) t n rc n , 1 rc n , 2 rc n , 3 rc n , 4 

1 1 5 2 2 2 2 

2 1 5 2 2 2 2 

3 1 3 1 1 1 1 

4 2 6 4 4 4 4 

5 2 1 1 1 1 1 

6 2 5 1 1 1 1 

7 3 5 2 2 2 2 

8 3 7 4 4 4 4 

9 3 2 3 3 3 3 

10 4 2 1 1 1 1 

11 4 8 2 2 2 2 

12 4 2 3 3 3 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.omega.2018.12.010 . 
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